22.netty入门(二十二)Netty接收请求过程源码分析
22.netty入门(二十二)Netty接收请求过程源码分析
1.源码剖析的目的
(1)服务器启动后肯定是要接受客户端请求并返回客户端想要的 信息的,下面源码分析 Netty 在启动之后是如何接受客户端请求的。
(2)源码使用 io.netty.example 包下的echo包下的代码。
2.源码剖析
说明:
(1)从之前服务器启动的源码中,我们得知,服务器最终注册了一个 Accept 时间等待客户端的连接。我们也知道, NIOServerSocketChannel 将自己注册到了 boss 单例线程池(reactor 线程)上,也就是 EventLoop。
(2)先简单说下 EventLoop 的逻辑
- EventLoop 的作用是一个死循环,而这个循环中做 3 件事情:
- 有条件的等待 Nio 事件。
- 处理 Nio 事件。
- 处理消息队列中的任务。
- 仍用前面的项目来分析:进入到 NioEventLoop 源码中后,在private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) 方法开始调试,最终我们要分析到 AbstractNioChannel 的 doBeginRead 方法,当到这个方法时,针对于这个客户端的连接就完成了,接下来就可以监听读事件了。
3.源码分析过程
直接debug模式启动Server端,然后在浏览器输入http://localhost:8007,接着以下代码分析。
因为我们想要分析接受client 连接的代码,先找到对应的 EventLoop源码,如图中的 NioEventLoop 循环,找到如下源码
@Override
protected void run() {
int selectCnt = 0;
for (;;) {
try {
int strategy;
try {
strategy = selectStrategy.calculateStrategy(selectNowSupplier, hasTasks());
switch (strategy) {
......
// 处理各种 strategy 类型
default:
}
} catch (IOException e) {
// If we receive an IOException here its because the Selector is messed up. Let's rebuild
// the selector and retry. https://github.com/netty/netty/issues/8566
rebuildSelector0();
selectCnt = 0;
handleLoopException(e);
continue;
}
selectCnt++;
cancelledKeys = 0;
needsToSelectAgain = false;
final int ioRatio = this.ioRatio;
boolean ranTasks;
if (ioRatio == 100) {
try {
if (strategy > 0) {
//对strategy事件进行处理
processSelectedKeys();
}
} finally {
// Ensure we always run tasks.
ranTasks = runAllTasks();
}
} else if (strategy > 0) {
final long ioStartTime = System.nanoTime();
try {
processSelectedKeys();
} finally {
......
}
} else {
ranTasks = runAllTasks(0); // This will run the minimum number of tasks
}
......
} catch (CancelledKeyException e) {
......
} catch (Error e) {
......
} catch (Throwable t) {
......
} finally {
.......
}
}
}
如上代码 strategy 根据请求的类型走不同的策略,最后处理策略的方法是 processSelectedKeys(),继续跟踪核心方法 processSelectedKeys(),源码如下:
//进入processSelectedKeys ---> processSelectedKeysOptimized(); ---> processSelectedKey
private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
// 事件合法性验证
if (!k.isValid()) {
final EventLoop eventLoop;
try {
eventLoop = ch.eventLoop();
} catch (Throwable ignored) {
// If the channel implementation throws an exception because there is no event loop, we ignore this
// because we are only trying to determine if ch is registered to this event loop and thus has authority
// to close ch.
return;
}
// Only close ch if ch is still registered to this EventLoop. ch could have deregistered from the event loop
// and thus the SelectionKey could be cancelled as part of the deregistration process, but the channel is
// still healthy and should not be closed.
// See https://github.com/netty/netty/issues/5125
if (eventLoop == this) {
// close the channel if the key is not valid anymore
unsafe.close(unsafe.voidPromise());
}
return;
}
try {
// 获取 readyOps
int readyOps = k.readyOps();
// We first need to call finishConnect() before try to trigger a read(...) or write(...) as otherwise
// the NIO JDK channel implementation may throw a NotYetConnectedException.
if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
// remove OP_CONNECT as otherwise Selector.select(..) will always return without blocking
// See https://github.com/netty/netty/issues/924
int ops = k.interestOps();
ops &= ~SelectionKey.OP_CONNECT;
k.interestOps(ops);
unsafe.finishConnect();
}
// Process OP_WRITE first as we may be able to write some queued buffers and so free memory.
if ((readyOps & SelectionKey.OP_WRITE) != 0) {
// Call forceFlush which will also take care of clear the OP_WRITE once there is nothing left to write
unsafe.forceFlush();
}
// Also check for readOps of 0 to workaround possible JDK bug which may otherwise lead
// to a spin loop
if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
unsafe.read();
}
} catch (CancelledKeyException ignored) {
unsafe.close(unsafe.voidPromise());
}
}
第一个if中对事件合法性验证,接着获取readyOps,我们debug得到是16,也就是 Accept 事件。说明浏览器的请求已经进来了。
SelectionKey中16 代码的意义:
属于连接请求,这就是我们拿到了之前用Http://localhost:8007 请求的连接,接着继续跟进代码 EventLoopGroup ---> processSelectedKey ---> unsafe.read();其中unsafe是 boss线程中 NioServerSocketChannel 的 AbstractNioMessageChannel$NioMessageUnsafed 对象。
继续跟进AbstractNioMessageChannel$NioMessageUnsafed ---> read() ,得到如下源码,源码如下:
@Override
public void read() {
// 判断eventLoop线程是否当前线程
assert eventLoop().inEventLoop();
// 获取NioServerSocketChannelConfig
final ChannelConfig config = config();
// 获取DefaultChannelPipeline。是一个双向链表,可以看到内部包含 LoggingHandler,ServerBootStraptHandler
final ChannelPipeline pipeline = pipeline();
final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
allocHandle.reset(config);
boolean closed = false;
Throwable exception = null;
try {
try {
do {
// 执行doReadMessages方法,并传入一个 readBuf 变量,这个变量是一个List,也就是一个容器
// doReadMessages 是读取 boss 线程中的 NioServerSocketChannel 接收到的请求。并把这些请求放进容器
int localRead = doReadMessages(readBuf);
......
allocHandle.incMessagesRead(localRead);
} while (continueReading(allocHandle));
} catch (Throwable t) {
exception = t;
}
// 循环容器,执行 pipeline.fireChannelRead(readBuf.get(i));
int size = readBuf.size();
for (int i = 0; i < size; i ++) {
readPending = false;
// 处理这些接收的请求或者其他事件
pipeline.fireChannelRead(readBuf.get(i));
}
......
if (exception != null) {
......
}
if (closed) {
......
}
} finally {
......
}
}
}
继续跟进 NioServersocketChannel ---> doMessage(buf),可以进入到NioServerSocketChannel,找到doMessage方法
@Override
// 参数buf是一个静态队列。private final List readBuf = new ArrayList();
// 读取boss线程中的NioServerSocketChannel接受到的请求,并且将请求放到buf容器中
protected int doReadMessages(List<Object> buf) throws Exception {
//通过Nio中工具类的建立连接,其实底层是调用了ServerSocketChannelImpl ---> accept()方法建立TCP连接,
//并返回一个Nio中的SocketChannel
SocketChannel ch = SocketUtils.accept(javaChannel());
try {
if (ch != null) {
// 将获取到的Nio中SocketCHannel包装成Netty中的NioSocketChannel 并且添加到buf队列中(list)
buf.add(new NioSocketChannel(this, ch));
return 1;
}
} catch (Throwable t) {
logger.warn("Failed to create a new channel from an accepted socket.", t);
try {
ch.close();
} catch (Throwable t2) {
logger.warn("Failed to close a socket.", t2);
}
}
return 0;
}
doReadMessages到这分析完。
回到EventLoopGroup ---> ProcessSelectedKey
循环遍历之前doReadMessage中获取的buf中的所有请求,调用Pipeline的firstChannelRead方法,用于处理这些接受的请求或者其他事件,在read方法中,循环调用ServerSocket的Pipeline的fireChannelRead方法,开始执行管道中的handler的ChannelRead方法,如下
继续跟进,进入 pipeline.fireChannelRead(readBuf.get(i)); 一直跟到AbstracChannelHandlerContext ---> invokeChannelRead
private void invokeChannelRead(Object msg) {
if (invokeHandler()) {
try {
// DON'T CHANGE
// Duplex handlers implements both out/in interfaces causing a scalability issue
// see https://bugs.openjdk.org/browse/JDK-8180450
final ChannelHandler handler = handler();
final DefaultChannelPipeline.HeadContext headContext = pipeline.head;
if (handler == headContext) {
headContext.channelRead(this, msg);
} else if (handler instanceof ChannelDuplexHandler) {
((ChannelDuplexHandler) handler).channelRead(this, msg);
} else {
((ChannelInboundHandler) handler).channelRead(this, msg);
}
} catch (Throwable t) {
invokeExceptionCaught(t);
}
} else {
fireChannelRead(msg);
}
}
进入 handler() 中,DefaultChannelPipeline ---> handler()
debug源码可以看到,在管道中添加了多个Handler,分别是:HeadContext,LoggingContext,ServerBootStrapAcceptor,TailContext 因此debug时候会依次进入每一个Handler中。我们重点看ServerBootStrapAcceptor中的channelRead方法
@Override
@SuppressWarnings("unchecked")
public void channelRead(ChannelHandlerContext ctx, Object msg) {
// msg 强转成 Channel,实际上就是 NioSocketChannel
final Channel child = (Channel) msg;
// 添加 NioSocketChannel 的各种属性
child.pipeline().addLast(childHandler);
setChannelOptions(child, childOptions, logger);
for (Entry<AttributeKey<?>, Object> e: childAttrs) {
child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue());
}
try {
// 将 客户端连接注册到 worker 线程池
// 将该 NioSocketChannel 注册到 childGroup 中的一个 EventLoop 上,并添加一个监听器
childGroup.register(child).addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
if (!future.isSuccess()) {
forceClose(child, future.cause());
}
}
});
} catch (Throwable t) {
forceClose(child, t);
}
}
进入register方法, MultithreadEventLoopGroup --->register , SingleThreadEventLoop --->register , AbstractChannel ---> register,如下
首先看 MultithreadEventLoopGroup 中的 register
@Override
public ChannelFuture register(Channel channel) {
return next().register(channel);
}
进入next()方法中,最终我们可以追到 DefaultEventExecutorChooserFactory ---> GenericEventExecutorChooser ---> next()
内部类中的next
private static final class GenericEventExecutorChooser implements EventExecutorChooser {
private final AtomicInteger idx = new AtomicInteger();
private final EventExecutor[] executors;
GenericEventExecutorChooser(EventExecutor[] executors) {
this.executors = executors;
}
@Override
public EventExecutor next() {
return executors[Math.abs(idx.getAndIncrement() % executors.length)];
}
}
通过debug可以看到,next返回的就是我们在workerGroup中创建的线程数组中的某一个子线程EventExecutor
接下来我们在回到register方法: AbstractChannel ---> register 方法,如下:
@Override
public final void register(EventLoop eventLoop, final ChannelPromise promise) {
if (eventLoop == null) {
throw new NullPointerException("eventLoop");
}
if (isRegistered()) {
promise.setFailure(new IllegalStateException("registered to an event loop already"));
return;
}
if (!isCompatible(eventLoop)) {
promise.setFailure(
new IllegalStateException("incompatible event loop type: " + eventLoop.getClass().getName()));
return;
}
AbstractChannel.this.eventLoop = eventLoop;
if (eventLoop.inEventLoop()) {
register0(promise);
} else {
try {
eventLoop.execute(new Runnable() {
@Override
public void run() {
register0(promise);
}
});
} catch (Throwable t) {
logger.warn(
"Force-closing a channel whose registration task was not accepted by an event loop: {}",
AbstractChannel.this, t);
closeForcibly();
closeFuture.setClosed();
safeSetFailure(promise, t);
}
}
}
关键方法register0
private void register0(ChannelPromise promise) {
try {
// check if the channel is still open as it could be closed in the mean time when the register
// call was outside of the eventLoop
if (!promise.setUncancellable() || !ensureOpen(promise)) {
return;
}
boolean firstRegistration = neverRegistered;
doRegister();
neverRegistered = false;
registered = true;
// Ensure we call handlerAdded(...) before we actually notify the promise. This is needed as the
// user may already fire events through the pipeline in the ChannelFutureListener.
pipeline.invokeHandlerAddedIfNeeded();
safeSetSuccess(promise);
pipeline.fireChannelRegistered();
// Only fire a channelActive if the channel has never been registered. This prevents firing
// multiple channel actives if the channel is deregistered and re-registered.
if (isActive()) {
if (firstRegistration) {
pipeline.fireChannelActive();
} else if (config().isAutoRead()) {
// This channel was registered before and autoRead() is set. This means we need to begin read
// again so that we process inbound data.
//
// See https://github.com/netty/netty/issues/4805
beginRead();
}
}
} catch (Throwable t) {
// Close the channel directly to avoid FD leak.
closeForcibly();
closeFuture.setClosed();
safeSetFailure(promise, t);
}
}
进入 doRegister(); 方法:AbstractNioChannel ---> doRegister
@Override
protected void doRegister() throws Exception {
boolean selected = false;
for (;;) {
try {
selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this);
return;
} catch (CancelledKeyException e) {
if (!selected) {
// Force the Selector to select now as the "canceled" SelectionKey may still be
// cached and not removed because no Select.select(..) operation was called yet.
eventLoop().selectNow();
selected = true;
} else {
// We forced a select operation on the selector before but the SelectionKey is still cached
// for whatever reason. JDK bug ?
throw e;
}
}
}
}
上代码,selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this);此处我们将bossGroup中的EventLoop的channel 注册到workerGroup中的EventLoop中的 select中,方法中会得到一个selectionKey
我们可以看register方法的注视,如下:
Registers this channel with the given selector, returning a selection key.
使用给定的选择器注册此通道,并返回选择键。
接着 debug,最终回到 AbstractNioChannel 中的 doBeginRead 方法
@Override
protected void doBeginRead() throws Exception {
// Channel.read() or ChannelHandlerContext.read() was called
final SelectionKey selectionKey = this.selectionKey;
if (!selectionKey.isValid()) {
return;
}
readPending = true;
final int interestOps = selectionKey.interestOps();
if ((interestOps & readInterestOp) == 0) {
selectionKey.interestOps(interestOps | readInterestOp);
}
}
追到这里,针对客户的连接已经完成,接下来是读取监听事件,也就是bossGroup的连接建立,注册步骤已经完成了,接下来就是workerGroup中的事件处理了。
4.Netty接受请求过程梳理
- 总体流程:接收连接 ---> 创建一个新的 NioSocketChannel ---> 注册到一个 WorkerEventLoop 上 ---> 注册 selectRead 事件
- 服务器轮询 Accept 事件(文中最开始的那个 for 循环),获取事件后调用 unsafe 的read 方法,这个 unsafe 是ServerSocket 的内部类,方法内部由两部分组成
- doReadMessage 用于创建 NioSocketChannel 对象,该对象包装 JDK 的 NioChannel 客户端,该方法创建一个 ServerSocketChannel
- 之后执行 pipeline.fireChannelRead(readBuf.get(i));方法,并且将自己绑定到一个 chooser 选择器选择的 workerGroup 中的某个 EventLoop 上,并且注册一个 0(连接),表示注册成功,但是并没有注册1(读取)
来源:https://blog.csdn.net/zhufei463738313/article/details/129667506